Please wait a minute...
Journal of Molecular and Clinical Medicine   2019, Vol. 2 Issue (2): 41-53    DOI: 10.31083/j.jmcm.2019.02.151
Case Report Previous articles |
The role of developmental signaling pathways in non-small cell lung carcinoma
Darko Durovski1, 2, Ornella Randazzo1, 5, Godefridus J. Peters1, 3, Elisa Giovannetti1, 4, *()
1 Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam 1081HV, The Netherlands
2 Amsterdam University College, Amsterdam 1098XG, The Netherlands
3 Department of Biochemistry, Medical University of Gdansk, Gdansk 80-4161, Poland
4 Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, Pisa 56017, Italy
5 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo 90123, Italy
Download:  PDF(777KB)  ( 51 ) Full text   ( 5 )
Export:  BibTeX | EndNote (RIS)      
Abstract  

On a global scale, lung cancer is the most widespread and deadly type of cancer and the non-small cell lung cancer histological subtype, contributes to a significant proportion of this mortality. It has been recently proposed that the main drivers of cancer progression and chemoresistance are cancer stem cells which can be identified through numerous biomarkers or through the overactivation of developmental signaling pathways which are essential for embryonic development but are normally suppressed in adulthood. The primary aim of this review was to compile experimental findings about mediators of three signaling pathways, namely Sonic Hedgehog, Notch and Wingless Integrated, in the prognosis and targeting of three non-small cell lung carcinoma histological types, namely adenocarcinoma, squamous cell carcinoma and large cell neuroendocrine lung carcinoma. Some mediators of all three signaling pathways can be used as biomarkers and overactivation is associated with shorter overall and disease-free survival of patients accompanied by metastasis, epithelial-to-mesenchymal transition and the acquisition of chemoresistance and radioresistance. Additionally, using antagonists to block overexpressed pathway mediators has yielded promising results in vitro with significant apoptotic and anti-tumor activity. Finally, numerous novel mediators of the three pathways have been identified and their pharmacological targeting has resulted in promising pre-clinical findings. The first in-human clinical trials of several drugs are currently being conducted. The current review supports further exploration of the three developmental signaling pathways in the prognosis and targeted treatment of non-small cell lung carcinoma with the aim of enhancing current treatment guidelines with the implementation of targeted therapies.

Key words:  Non-small cell lung carcinoma      developmental signaling pathways      Notch      Sonic hedgehog      Wingless Integrated     
Published:  20 April 2019     
*Corresponding Author(s):  Elisa Giovannetti     E-mail:  e.giovannetti@vumc.nl

Cite this article: 

Darko Durovski, Ornella Randazzo, Godefridus J. Peters, Elisa Giovannetti. The role of developmental signaling pathways in non-small cell lung carcinoma. Journal of Molecular and Clinical Medicine , 2019, 2(2): 41-53.

URL: 

https://jmcm.imrpress.com/EN/10.31083/j.jmcm.2019.02.151     OR     https://jmcm.imrpress.com/EN/Y2019/V2/I2/41

Figure 1.  Shown are the mediators involved in Sonic Hedgehog signaling in the inactivated state of the pathway (a) and the activated state (b). Legend: Shh - Sonic Hedgehog ligand, HHIP - Hedgehog interacting protein, Smo - Smoothened, SUFU - suppressor of fused homolog, GSK3 - glycogen synthase kinase 3, Gli - glioma-associated oncogene.

Figure 2.  Shown are the mediators involved in canonical Notch signaling in the inactivated state of the pathway. Legend: DLL - Delta-like ligand, JAG - Jagged, NICD - Notch intracellular domain.

Table 1  Association of Notch ligands with OS
Ligand Outcome
JAG1 Higher OS [62], lower OS [67]
JAG2 Lower OS [60]
DLL1 Higher OS [62]
DLL3 No predictive value [60]
DLL4 Higher OS [60]
Table 2  The association of Notch pathway mediators with NSCLC outcomes
Signaling mediator Role in Notch signaling Outcome of targeting
Histone deacetylase 6 (HDAC6) [84] Deacetylation of HSP90; link for TGF-β1-induced activation of Notch1 Prevented HEY-1, HES-1 upregulation
Forkhead box J2 (FOXJ2) [85] Inhibits TGF-β1-mediated EMT; lower expression in cancer Increased Notch1 and NICD1 levels
Zinc-finger RNA (ZFR) binding protein [86] Increases Notch1 levels Reduced cell migration potential
lncRNA-Low Expression in Tumor (LET) [87] Reduces NICD1 levels Downregulation led to higher TNM stage, low OS
Rnd3/RhoE (Rho GTPase) [88] Downregulated; associated with higher NICD expression Forced regulation led to an inhibition of Notch-regulated proliferation
miR-129-5p [89] Inhibits DLL1 homologue in A549 and H460 cells Diminished stemness markers, reduced resistance
miR-223 [90] Upregulated; leads to overactivation of Notch Reduced CD44+ subpopulation of CSCs, improved response to erlotinib
Rumi, protein-O-glucosyltransferase [91] Two to three-fold higher expression in NSCLC Knockdown led to decreased Hes1, Hey1, cell proliferation and migration
Figure 3.  Shown are the mediators involved in canonical Wnt signaling in the inactivated state of the pathway (left) and the activated state (right). Legend: Frizzled - Fz, LRP6 - lipoprotein receptor 6, Dishevelled - DVL, GSK3 - glycogen synthase kinase, CK1 - casein kinase 1.

Table 3  Antagonist families in the Wnt signaling pathway and their corresponding members
Antagonist family Members
Secreted frizzled related protein (SFRP) [98] SFRP1, SFRP2, SFRP3, SFRP4, SFRP5
Wnt inhibitory factors (WIF) [98, 99] WIF-1
Dickkopf (Dkk) [100]
Dvl antagonists [100] Idax, human homolog of Dapper (HDPR1)
Miscellaneous Cerberus, [100] Disabled-2, [100] Wnt-7a, [101] Frizzled-9 [101]
[1] Freddie Bray., Jacques Ferlay., Isabelle Soerjomataram., Rebecca L. Siegel., Lindsey A. Torre AJ.. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 2018; 68: 394-424.
doi: 10.3322/caac.21492 pmid: 30207593
[2] Siegel RL., Miller KD., Jemal A.. Cancer Statistics, 2017. CA: A Cancer Journal for Clinicians, 2017; 67: 7-30.
doi: 10.3322/caac.21387 pmid: 28055103
[3] World Health Organization. Cancer Fact Sheet (2018). Available from: https://www.who.int/news-room/fact-sheets/detail/cancer (Accessed 5th March 2019.). Sep [accessed 2019 Mar 5].
[4] Babashah S. Cancer stem cells: Emerging concepts and future perspectives in translational oncology. Cancer Stem Cells: Emerging Concepts and Future Perspectives in Translational Oncology, 2015: 1-553.
[5] Eramo A., Haas TL., De Maria R. Lung cancer stem cells: tools and targets to fight lung cancer. Oncogene, 2010; 29: 4625-4635.
doi: 10.1038/onc.2010.207 pmid: 20531299
[6] Ettinger DS., Wood DE., Aisner DL., Akerley W., Bauman J., Chirieac LR., D’Amico TA., Decamp MM., Dilling TJ., Dobelbower M, et al Non-small cell lung cancer, version 5.2017: Clinical practice guidelines in oncology. JNCCN Journal of the National Comprehensive Cancer Network, 2017; 15: 504-535.
doi: 10.6004/jnccn.2017.0050 pmid: 28404761
[7] Hubbard MO., Fu P., Margevicius S, Dowlati A., Linden PA. Five-year survival does not equal cure in non-small cell lung cancer: A surveillance, epidemiology, and end results-based analysis of variables affecting 10- to 18-year survival. Journal of Thoracic and Cardiovascular Surgery, 2012; 143: 1307-1313.
doi: 10.1016/j.jtcvs.2012.01.078
[8] Gridelli C., Casaluce F. Frontline immunotherapy for NSCLC: alone or not alone? Nature Reviews Clinical Oncology, 2018; 15: 593-594.
doi: 10.1038/s41571-018-0070-7 pmid: 29993034
[9] Schil PE Van., Hellmann MD, Peters S., Guidelines E. Metastatic non-small cell lung cancer : ESMO clinical practice guidelines for diagnosis, treatment clinical practice guidelines. Annals of Oncology, 2018; 29: 192-237.
[10] Skinner KE, Fernandes AW., Walker MS., Pavilack M. , VanderWalde A. Healthcare costs in patients with advanced non-small cell lung cancer and disease progression during targeted therapy: a real-world observational study. Journal of Medical Economics, 2018; 21: 192-200.
doi: 10.1080/13696998.2017.1389744 pmid: 29041833
[11] Wintner LM., Giesinger JM., Zabernigg A., Sztankay M., Meraner V., Pall G., Hilbe W., Holzner B. Quality of life during chemotherapy in lung cancer patients: results across different treatment lines. British Journal of Cancer, 2013; 109: 2301-2308.
doi: 10.1038/bjc.2013.585
[12] Baudinoi TA. Targeted cancer therapy: The next generation of cancer treatment. Current Drug Discovery Technologies, 2015; 12: 3-20.
doi: 10.1148/radiol.2019190913 pmid: 31845844
[13] Naylor EC., Desani JK., Chung PK. Targeted therapy and immunotherapy for lung cancer. Surgical Oncology Clinics of North America, 2016; 25: 601-609.
doi: 10.1016/j.soc.2016.02.011 pmid: 27261918
[14] Yu Z., Pestell TG., Lisanti MP., Pestell RG. Cancer Stem Cells. International Journal of Biochemistry & Cell Biology, 2012; 44: 2144-2151.
doi: 10.1002/humu.23868 pmid: 31301157
[15] Giroux-Leprieur E., Costantini A., Ding VW., He B. Hedgehog signaling in lung cancer: From oncogenesis to cancer treatment resistance. International Journal of Molecular Sciences, 2018; 19: 1-17.
doi: 10.1016/j.canlet.2019.10.044 pmid: 31697978
[16] Burke R., Magee AI., Rodgers UR., Lanyon-Hogg T., Tate EW., Blagg J., Ritzefeld M., Masumoto N. Characterization of hedgehog acyltransferase inhibitors identifies a small molecule probe for hedgehog signaling by cancer cells. ACS Chemical Biology, 2016; 11: 3256-3262.
doi: 10.1021/acschembio.6b00896 pmid: 27779865
[17] Bora-Singhal N., Perumal D., Nguyen J., Chellappan S Gli1-mediated regulation of Sox2 facilitates self-renewal of stem-like cells and confers resistance to egfr inhibitors in non-small cell lung cancer. Neoplasia, 2015; 17: 538-551.
doi: 10.1016/j.neo.2015.07.001 pmid: 26297432
[18] Magee AI., Konitsiotis AD., Tate EW., Couchman JR, Palmer CP., Jovanović B., Chang S-C., Ciepla P., Masumoto N. Attenuation of hedgehog acyltransferase-catalyzed sonic hedgehog palmitoylation causes reduced signaling, proliferation and invasiveness of human carcinoma cells. PLoS ONE, 2014; 9: e89899.
doi: 10.1371/journal.pone.0089899 pmid: 24608521
[19] Rodriguez-Blanco J., Schilling NS., Tokhunts R., Giambelli C., Long J., Liang Fei D, Singh S., Black KE., Wang Z., Galimberti F, et al. The Hedgehog processing pathway is required for NSCLC growth and survival. Oncogene, 2013; 32: 2335-2345.
doi: 10.1038/onc.2012.243
[20] Monique T. Barakat., Eric W. Humke MPS. Learning from Jekyll to control Hyde: hedgehog signaling in development and cancer. Trends in Molecular Medicine, 2010; 16: 337-348.
doi: 10.1016/j.molmed.2010.05.003
[21] Raz G., Allen KE., Kingsley C., Cherni I., Arora S., Watanabe A., Lorenzo CD., Edwards V DK., Sridhar S., Hostetter G, et al. Hedgehog signaling pathway molecules and ALDH1A1 expression in early-stage non-small cell lung cancer. Lung Cancer, 2012; 76: 191-196.
doi: 10.1016/j.lungcan.2011.10.015
[22] Choi Y., Oh S., Hwang J., Kim H., Kang M., Yoo YA., Quan Y. The effects of sonic hedgehog signaling pathway components on non-small-cell lung cancer progression and clinical outcome. World Journal of Surgical Oncology, 2014; 12: 268.
doi: 10.1186/1477-7819-12-268 pmid: 25141859
[23] Gialmanidis IP., Bravou V., Amanetopoulou SG, Varakis J., Kourea H., Papadaki H. Overexpression of hedgehog pathway molecules and FOXM1 in non-small cell lung carcinomas. Lung Cancer, 2009; 66: 64-74.
doi: 10.1016/j.lungcan.2009.01.007 pmid: 19200615
[24] Yang Q., Shen SS., Zhou S., Ni J., Chen D., Wang G., Li Y. STAT3 activation and aberrant ligand-dependent sonic hedgehog signaling in human pulmonary adenocarcinoma. Experimental and Molecular Pathology, 2012; 93: 227-236.
doi: 10.1016/j.yexmp.2012.04.009
[25] Giroux Leprieur E., Vieira T., Antoine M., Rozensztajn N., Rabbe N., Ruppert AM., Lavole A., Cadranel J., Wislez M. Sonic hedgehog pathway activation is associated with resistance to platinum-based chemotherapy in advanced non-small-cell lung carcinoma. Clinical Lung Cancer, 2016; 17: 301-308.
doi: 10.1016/j.cllc.2015.12.007 pmid: 26762562
[26] Wang C., Giroux-Leprieur E., Che J., He B., Tolani B., Jablons D., Luh TM., Jin JQ., Li H., Hao X. , et al. Gli promotes epithelial-mesenchymal transition in human lung adenocarcinomas. Oncotarget, 2016; 7: 80415-80425.
doi: 10.18632/oncotarget.11246 pmid: 27533453
[27] Yue D., Li H., Che J., Zhang Y., Tseng HHK., Jin JQ., Luh TM., Giroux-Leprieur E., Mo M., Zheng Q, et al. Hedgehog/Gli promotes epithelial-mesenchymal transition in lung squamous cell carcinomas. Journal of Experimental and Clinical Cancer Research, 2014; 33: 1-7.
doi: 10.1186/1756-9966-33-1 pmid: 24383517
[28] Bermudez O., Hennen E., Koch I., Lindner M., Eickelberg O. Gli1 mediates lung cancer cell proliferation and sonic hedgehog-dependent mesenchymal cell activation. PLoS ONE, 2013; 8: e63226.
doi: 10.1371/journal.pone.0063226 pmid: 23667589
[29] Petrou I., Papadaki H., Kourea H., Gialmanidis IP., Bravou V., Lilis I., Mathioudakis A Expression of Bmi, FoxF, Nanog, and γ-catenin in relation to hedgehog signaling pathway in human non-small-cell lung cancer. Lung, 2013; 191: 511-521.
doi: 10.1007/s00408-013-9490-4
[30] Tseng HH., Leguay F., Kim IJ., Acevedo LA., Wang C., Wislez M., Hoang NT., Leprieur EG., He B., Yue D, et al. Membrane-bound full-length Sonic Hedgehog identifies cancer stem cells in human non-small cell lung cancer. Oncotarget, 2017; 8: 103744-103757.
doi: 10.18632/oncotarget.21781 pmid: 29262597
[31] Du J, Chen W., Yang L., Dai J., Guo J., Wu Y., Gong K., Zhang J., Yu N., Xie Z, et al. Disruption of SHH signaling cascade by SBE attenuates lung cancer progression and sensitizes DDP treatment. Scientific Reports, 2017; 7: 1-12.
doi: 10.1038/s41598-016-0028-x pmid: 28127051
[32] Tian F., Mysliwietz J., Ellwart J., Gamarra F., Huber RM., Bergner A. Effects of the Hedgehog pathway inhibitor GDC-0449 on lung cancer cell lines are mediated by side populations. Clinical and Experimental Medicine, 2012; 12: 25-30.
doi: 10.1007/s10238-011-0135-8
[33] Yuan Z., Dmitrovsky E., Memoli VA., Petty WJ., Robbins DJ., Goetz JA., Black CC., Singh S., Ogden SK. Frequent requirement of hedgehog signaling in non-small cell lung carcinoma. Oncogene, 2006; 26: 1046-1055.
doi: 10.1038/sj.onc.1209860 pmid: 16909105
[34] Huang L., Walter V., Hayes DN., Onaitis M. Hedgehog-GLI signaling inhibition suppresses tumor growth in squamous lung cancer. Clinical Cancer Research, 2014; 20: 1566-1575.
doi: 10.1158/1078-0432.CCR-13-2195
[35] Zeng J., Aziz K., Chettiar ST., Aftab BT., Armour M., Gajula R., Gandhi N., Salih T., Herman JM., Wong J, et al. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers. International Journal of Radiation Oncology, Biology, Physics, 2013; 86: 143-149.
doi: 10.1016/j.ijrobp.2012.10.014 pmid: 23182391
[36] Leprieur EG., Jablons DM., Tolani B., Li H., Acevedo LA., Hoang NT., He B. Preclinical characterization of therapeutic antibodies targeted at the carboxy-terminus of Sonic hedgehog. Oncotarget, 2018; 9: 14311-14323.
doi: 10.18632/oncotarget.24510 pmid: 29581846
[37] Airoldi I., Tupone MG., Esposito S., Russo M V., Barbarito G., Cipollone G., Di Carlo E. Interleukin-27 re-educates intratumoral myeloid cells and down-regulates stemness genes in non-small cell lung cancer. Oncotarget, 2015; 6: 3694-3708.
doi: 10.18632/oncotarget.2797 pmid: 25638163
[38] Pan J, Qin Y., Zhang M. HPIP promotes non-small cell lung cancer cell proliferation, migration and invasion through regulation of the Sonic hedgehog signaling pathway. Biomedicine and Pharmacotherapy, 2016; 77: 176-181.
doi: 10.1016/j.biopha.2015.12.012 pmid: 26796282
[39] Jian W., Bai Y., Li X., Kang J., Lei Y., Xue Y. Phosphatidylethanolamine-binding protein 4 promotes the epithelial-to-mesenchymal transition in non-small cell lung cancer cells by activating the sonic hedgehog signaling pathway. Journal of Cellular Biochemistry, 2018; 5386-5395.
doi: 10.1002/jcb.27817 pmid: 30367510
[40] Li X., Zhou X., Zhang Y., Zu L., Fan Y., Yao F., Zhou Q. WW, a Gli1 binding protein, negatively regulated Hedgehog signaling in lung cancer. Oncotarget, 2016; 7.
doi: 10.18632/oncotarget.12156 pmid: 28874966
[41] Koeffler HP., Shi S., Deng YZ., Li G., Feng X., Li JJ., Shi J., Zhao JS., Zhu D., Xie D, et al. RACK1 Promotes Non-small-cell Lung Cancer Tumorigenicity through Activating Sonic Hedgehog Signaling Pathway. Journal of Biological Chemistry, 2012; 287: 7845-7858.
doi: 10.1074/jbc.M111.315416
[42] Yang B., Miao S., Li Y. SCUBE2 inhibits the proliferation, migration and invasion of human non-small cell lung cancer cells through regulation of the sonic hedgehog signaling pathway. Gene, 2018; 672: 143-149.
doi: 10.1016/j.gene.2018.06.012 pmid: 29883759
[43] Fu L., Wu H., Cheng SY., Gao D., Zhang L., Zhao Y. Set7 mediated Gli3 methylation plays a positive role in the activation of sonic hedgehog pathway in mammals. eLife, 2016; 5: 1-19.
doi: 10.7554/eLife.15690 pmid: 27146893
[44] Frampton JE., Basset-Séguin N. Vismodegib: A review in advanced basal cell carcinoma. Drugs, 2018; 78: 1145-1156.
doi: 10.1007/s40265-018-0948-9 pmid: 30030732
[45] ClinicalTrials.gov. Itraconazole in non small cell lung cancer. National Library of Medicine (US), 2015 [accessed 2019 Mar 5].
doi: 10.1002/cpdd.723 pmid: 31287236
[46] ClinicalTrials.gov. Neoadjuvant itraconazole in non-small cell lung cancer. National Library of Medicine (US), 2019 [accessed 2019 Mar 5].
doi: 10.1378/chest.100.1.277 pmid: 1647938
[47] Cleutjens J., Vooijs M., Span P., Habets R., Kattenbeld B., Theys J., Paesmans K., Yahyanejad S, Groot AJ., Schuurbiers OCJ, et al. High NOTCH activity induces radiation resistance in non small cell lung cancer. Radiotherapy and Oncology, 2013; 108: 440-445.
doi: 10.1016/j.radonc.2013.06.020
[48] Ikezawa Y., Sakakibara-Konishi J., Mizugaki H., Oizumi S., Nishimura M. Inhibition of Notch and HIF enhances the antitumor effect of radiation in Notch expressing lung cancer. International Journal of Clinical Oncology, 2017; 22: 59-69.
doi: 10.1007/s10147-016-1031-8 pmid: 27553958
[49] Lin S., Negulescu A., Bulusu S., Gibert B., Delcros JG., Ducarouge B., Rama N., Gadot N., Treilleux I., Saintigny P, et al. Non-canonical NOTCH3 signalling limits tumour angiogenesis. Nature Communications, 2017; 8: 1-12.
doi: 10.1038/s41467-016-0009-6 pmid: 28232747
[50] Kang J., Kim E., Kim W., Seong KM., Youn H., Kim JW., Kim J., Youn B. Rhamnetin and cirsiliol induce radiosensitization and inhibition of epithelial-mesenchymal transition (EMT) by miR-34a-mediated suppression of Notch-1 expression in non-small cell lung cancer cell lines. Journal of Biological Chemistry, 2013; 288: 27343-27357.
doi: 10.1074/jbc.M113.490482
[51] Rajasinghe LD, Gupta S V. . Tocotrienol-rich mixture inhibits cell proliferation and induces apoptosis via down-regulation of the Notch-1/NF-κ B pathways in NSCLC cells. Nutrition and Dietary Supplements, 2017; 9: 103-114.
doi: 10.2147/NDS
[52] Jin MM., Ye YZ., Qian ZD., Zhang YB. Notch signaling molecules as prognostic biomarkers for non-small cell lung cancer. Oncology Letters, 2015; 10: 3252-3260.
doi: 10.3892/ol.2015.3662 pmid: 26722321
[53] Liu ZY., Wu T., Li Q., Wang MC., Jing L., Ruan ZP., Yao Y., Nan KJ., Guo H. Notch signaling components: diverging prognostic indicators in lung adenocarcinoma. Medicine (United States), 2016; 95: 1-9.
doi: 10.1097/MD.0000000000003715 pmid: 27196489
[54] Wael H., Yoshida R., Kudoh S., Hasegawa K., Niimori-Kita K., Ito T Notch1 signaling controls cell proliferation, apoptosis and differentiation in lung carcinoma. Lung Cancer, 2014; 85: 131-140.
doi: 10.1016/j.lungcan.2014.05.001
[55] Sinicropi-Yao SL, Amann JM., Lopez DLY., Cerciello F., Coombes KR., Carbone DP. Co-Expression analysis reveals mechanisms underlying the varied roles of NOTCH1 in NSCLC. Journal of Thoracic Oncology, 2019; 14: 223-236.
doi: 10.1016/j.jtho.2018.10.162 pmid: 30408569
[56] Wang X., Song N., Zhang Y., Cai Y., Liu Y., Qu X., Li Z., Li D., Hou K., Kang J. , et al. Coexpression of c-Met and Notch-1 correlates with poor prognosis in resected non-small-cell lung cancer. Tumor Biology, 2015; 36: 7053-7059.
doi: 10.1007/s13277-015-3404-4 pmid: 25869878
[57] Nguyen D, Rubinstein L., Takebe N., Miele L., Tomaszewski JE, Ivy P., Doroshow JH., Yang SX. Notch1 phenotype and clinical stage progression in non-small cell lung cancer. Journal of Hematology and Oncology, 2015; 8: 1-8.
doi: 10.1186/s13045-014-0099-8 pmid: 25622682
[58] Xie M., He CS., Wei SH., Zhang L. Notch-1 contributes to epidermal growth factor receptor tyrosine kinase inhibitor acquired resistance in non-small cell lung cancer in vitro and in vivo. European Journal of Cancer, 2013; 49: 3559-3572.
doi: 10.1016/j.ejca.2013.07.007
[59] Fujiki K., Inamurai H., Miyayamai T., Matsuokai M Involvement of Notch1 signaling in malignant progression of A549 cells subjected to prolonged cadmium exposure. Journal of Biological Chemistry, 2017; 292: 7942-7953.
doi: 10.1074/jbc.M116.759134 pmid: 28302721
[60] Chen CY., Chen YY., Hsieh MS., Ho CC., Chen KY., Shih JY., Yu CJ. Expression of notch gene and its impact on survival of patients with resectable non-small cell lung cancer. Journal of Cancer, 2017; 8: 1292-1300.
doi: 10.7150/jca.17741 pmid: 28607605
[61] Motooka Y., Fujino K., Sato Y., Kudoh S., Suzuki M., Ito T. Pathobiology of Notch2 in lung cancer. Pathology, 2017; 49: 486-493.
doi: 10.1016/j.pathol.2017.05.005 pmid: 28666642
[62] Hassan WA., Yoshida R., Kudoh S., Motooka Y., Ito T. Evaluation of role of Notch3 signaling pathway in human lung cancer cells. Journal of Cancer Research and Clinical Oncology, 2016; 142: 981-993.
doi: 10.1007/s00432-016-2117-4 pmid: 26838758
[63] Ma Y., Li M., Si J., Xiong Y., Lu F., Zhang J., Zhang L., Zhang P., Yang Y. Blockade of Notch3 inhibits the stem-like property and is associated with ALDH1A1 and CD44 via autophagy in non-small lung cancer. International Journal of Oncology, 2016; 48: 2349-2358.
doi: 10.3892/ijo.2016.3464 pmid: 27035162
[64] Zheng Y., de la Cruz C., Sayles LC., Alleyne-Chin C, Vaka D., Knaak TD., Bigos M., Xu YD., Hoang C., Shrager J, et al. A rare population of CD24+ ITGB4+ Notchhi cells drives tumor propagation in NSCLC and requires Notch3 for self-renewal. Cancer Cell, 2013; 24: 59-74.
doi: 10.1016/j.ccr.2013.05.021
[65] Wang Y., Yang R., Wang X., Ci H., Zhou L., Zhu B., Wu S., Wang D. Evaluation of the correlation of vasculogenic mimicry, Notch4, DLL4, and KAI1/CD82 in the prediction of metastasis and prognosis in non-small cell lung cancer. Medicine, 2018; 97: e13817.
doi: 10.1097/MD.0000000000013817 pmid: 30593175
[66] Shi C., Qian J., Ma M., Zhang Y., Han B. Notch 3 protein, not its gene polymorphism, is associated with the chemotherapy response and prognosis of advanced NSCLC patients. Cellular Physiology and Biochemistry, 2014; 34: 743-752.
doi: 10.1159/000363039 pmid: 25171754
[67] Pancewicz-Wojtkiewicz J., Eljaszewicz A., Kowalczuk O., Niklinska W., Charkiewicz R., Kozłowski M., Miasko A., Moniuszko M Prognostic significance of notch ligands in patients with Non-Small cell lung cancer. Oncology Letters, 2017; 13: 506-510.
doi: 10.3892/ol.2016.5420 pmid: 28123589
[68] Liu H., Peng J., Zhao M., Ma P., Zhong J., Li S., Lu Z. Downregulation of DLL4 predicts poor survival in non-small cell lung cancer patients due to promotion of lymph node metastasis. Oncology Reports, 2018; 40: 2988-2996.
doi: 10.3892/or.2018.6679 pmid: 30226615
[69] Ji X., Wang Z., Geamanu A., Sarkar FH., Gupta S V. Inhibition of cell growth and induction of apoptosis in non-small cell lung cancer cells by delta-tocotrienol is associated with notch-1 down-regulation. Journal of Cellular Biochemistry, 2011; 112: 2773-2783.
doi: 10.1002/jcb.23184
[70] Li DD., Qin XC., Yang Y., Chu HX., Li RL., Ma L xiang., Ding HW., Zhao QC. Daurinoline suppressed the migration and invasion of chemo-resistant human non-small cell lung cancer cells by reversing EMT and Notch-1 and sensitized the cells to Taxol. Environmental Toxicology and Pharmacology, 2019; 66: 109-115.
doi: 10.1016/j.etap.2018.12.005 pmid: 30641414
[71] He F., Du T., Jiang Q., Zhang Y. Synergistic effect of Notch-3-Specific inhibition and paclitaxel in non-small cell lung cancer (NSCLC) cells via activation of the intrinsic apoptosis pathway. Medical Science Monitor, 2017; 23: 3760-3769.
doi: 10.12659/msm.902641 pmid: 28769027
[72] Hu BD., Guo J., Ye YZ., Du T., Cheng CS., Jiang Q., Liu RN., Zhang YB. Specific inhibitor of Notch-3 enhances the sensitivity of NSCLC cells to gemcitabine. Oncology Reports, 2018; 40: 155-164.
doi: 10.3892/or.2018.6448 pmid: 29781034
[73] An L., Li DD., Chu HX., Zhang Q., Wang CL., Fan YH., Song Q., Ma H Da., Feng F., Zhao QC. Terfenadine combined with epirubicin impedes the chemo-resistant human non-small cell lung cancer both in vitro and in vivo through EMT and Notch reversal. Pharmacological Research, 2017; 124: 105-115.
doi: 10.1016/j.phrs.2017.07.021 pmid: 28754458
[74] Dubois L., Yaromina A., Theys J., Lemmens A., Sosa Iglesias V, Barbeau LMO., Groot AJ., Houben R., Losen M., Vooijs M. Synergistic effects of NOTCH/γ-Secretase inhibition and standard of care treatment modalities in non-small cell lung cancer cells. Frontiers in Oncology, 2018; 8: 1-13.
doi: 10.3389/fonc.2018.00001 pmid: 29404275
[75] Puhan MA., Chandra D., Mosenifar Z., Ries A., Make B., Hansel NN., Sciurba F., Sinai C., Angeles L., Centre H. Gamma secretase inhibition by BMS-906024 enhances efficacy of paclitaxel in lung adenocarcinoma. Molecular Cancer Therapeutics, 2017; 16: 2759-2769.
doi: 10.1158/1535-7163.MCT-17-0439 pmid: 28978720
[76] Sakakibara-Konishi J., Ikezawa Y., Oizumi S., Kikuchi J., Kikuchi E., Mizugaki H., Kinoshita I., Dosaka-Akita H, Nishimura M. . Combined antitumor effect of γ-secretase inhibitor and ABT-737 in Notch-expressing non-small cell lung cancer. International Journal of Clinical Oncology, 2017; 22: 257-268.
doi: 10.1007/s10147-016-1060-3 pmid: 27816990
[77] Zhao Q., Mao A., Guo R., Zhang L., Yan J., Sun C., Tang J., Ye Y., Zhang Y., Zhang H. Suppression of radiation-induced migration of non-small cell lung cancer through inhibition of Nrf2-Notch Axis. Oncotarget, 2017; 8: 36603-36613.
doi: 10.18632/oncotarget.16622 pmid: 28402268
[78] Zhao Q., Mao A., Yan J., Sun C., Di C., Zhou X., Li H., Guo R., Zhang H. Downregulation of Nrf2 promotes radiation-induced apoptosis through Nrf2 mediated Notch signaling in non-small cell lung cancer cells. International Journal of Oncology, 2016; 48: 765-773.
doi: 10.3892/ijo.2015.3301 pmid: 26691854
[79] Zheng XJ, Yang ZX., Dong YJ., Zhang GY., Sun MF., An XK., Pan LH., Zhang SL. Downregulation of leptin inhibits growth and induces apoptosis of lung cancer cells via the Notch and JAK/STAT3 signaling pathways. Biology Open, 2016; 5: 794-800.
doi: 10.1242/bio.017798 pmid: 27185268
[80] Qian Y., Du Z., Xing Y., Zhou T., Chen T., Shi M. Interferon regulatory factor 4 (IRF4) is overexpressed in human non-small cell lung cancer (NSCLC) and activates the Notch signaling pathway. Molecular Medicine Reports, 2017; 16: 6034-6040.
doi: 10.3892/mmr.2017.7319 pmid: 28849037
[81] Xu Y., Ren H., Jiang J., Wang Q., Wudu M., Zhang Q., Su H., Wang C., Jiang L., Qiu X. KIAA0247 inhibits growth, migration, invasion of non-small-cell lung cancer through regulating the Notch pathway. Cancer Science, 2018; 109: 1055-1065.
doi: 10.1111/cas.13539 pmid: 29451718
[82] Kong R., Feng J., Ma Y., Zhou B., Li S., Zhang W., Jiang J. Silencing NACK by siRNA inhibits tumorigenesis in non-small cell lung cancer via targeting Notch1 signaling pathway. Oncology Reports, 2016; 35: 2306-2314.
doi: 10.3892/or.2016.4552 pmid: 26782286
[83] Wang X., Zhang G., Cheng Z., Dai L., Jia L., Jing X., Wang H., Zhang R., Liu M., Jiang T. , et al. Knockdown of LncRNA-XIST Suppresses Proliferation and TGF-β1-Induced EMT in NSCLC Through the Notch-1 Pathway by Regulation of miR-137. Genetic Testing and Molecular Biomarkers, 2018; 22: 333-342.
doi: 10.1089/gtmb.2018.0026 pmid: 29812958
[84] Deskin B., Lasky J., Zhuang Y., Shan B. Requirement of HDAC6 for activation of Notch1 by TGF-β1. Scientific Reports, 2016; 6: 1-9.
doi: 10.1038/s41598-016-0001-8 pmid: 28442746
[85] Yang Q., Cao X., Tao G., Zhou F., Zhao P., Shen Y., Chen X. Effects of FOXJ2 on TGF-β1-induced epithelial-mesenchymal transition through Notch signaling pathway in non-small lung cancer. Cell Biology International, 2017; 41: 79-83.
doi: 10.1002/cbin.10680 pmid: 27611107
[86] Zhang H., Zhang CF., Chen R. Zinc finger RNA-binding protein promotes non-small-cell carcinoma growth and tumor metastasis by targeting the Notch signaling pathway. American Journal of Cancer Research, 2017; 7: 1804-1819.
pmid: 28979805
[87] Li S., Zhao H., Li J., Zhang A., Wang H. Downregulation of long non-coding RNA LET predicts poor prognosis and increases Notch signaling in non-small cell lung cancer. Oncotarget, 2017; 9: 1156-1168.
doi: 10.18632/oncotarget.23452 pmid: 29416684
[88] Tang Y., Hu C., Yang H., Cao L., Li Y., Deng P., Huang L. Rnd3 regulates lung cancer cell proliferation through Notch signaling. PLoS ONE, 2014; 9: 1-10.
doi: 10.1371/journal.pone.0111897 pmid: 25372032
[89] Cai H., Cui Y., Ma Z., Zhang Y., Chang L. MiR-129-5p inhibits non-small cell lung cancer cell stemness and chemoresistance through targeting DLK1. Biochemical and Biophysical Research Communications, 2017; 490: 309-316.
doi: 10.1016/j.bbrc.2017.06.041 pmid: 28619508
[90] Zhang H., Chen F., He Y., Yi L., Ge C., Shi X., Tang C., Wang D., Wu Y., Nian W. Sensitivity of non-small cell lung cancer to erlotinib is regulated by the Notch/miR-223/ FBXW7 pathway. Bioscience Reports, 2017; 37: BSR20160478.
doi: 10.1042/BSR20171242 pmid: 29187583
[91] Chammaa M., Malysa A., Redondo C., Jang H., Chen W., Bepler G., Fernandez-Valdivia R RUMI is a novel negative prognostic marker and therapeutic target in non-small-cell lung cancer. Journal of Cellular Physiology, 2018; 233: 9548-9562.
doi: 10.1002/jcp.26858 pmid: 29953591
[92] ClinicalTrials.gov. RO4929097 and Erlotinib hydrochloride in treating patients with Stage IV or recurrent non-small cell lung cancer. National Library of Medicine (US), 2015 [accessed 2019 Mar 5].
doi: 10.1016/j.lungcan.2019.10.021 pmid: 31839416
[93] Mark J. M., Dusan K., Ben M., Manuel H, Michael J. M., Michael B. J., Dean L. H., Robert J. S., Ann M. K, Lu X, et al. Phase IB Trial of the Anti-Cancer Stem Cell DLL4-Binding Agent Demcizumab with Pemetrexed and Carboplatin as First-Line Treatment of Metastatic Non-Squamous NSCLC. Targeted Oncology, 2018; 13: 89-98.
doi: 10.1007/s11523-017-0543-0 pmid: 29188408
[94] ClinicalTrials.gov. A study of carboplatin and pemetrexed plus demcizumab (OMP-21M18) in subjects with non-squamous non-small cell lung cancer. National Library of Medicine (US), 2016.
[95] Yang YL., Jablons D., You L. An alternative way to initiate Notch1 signaling in non-small cell lung cancer. Translational Lung Cancer Research, 2014; 3: 238-241.
doi: 10.3978/j.issn.2218-6751.2013.12.06 pmid: 25806306
[96] Pongracz JE, Stockley RA. . Wnt signalling in lung development and diseases. Respiratory Research, 2006; 7: 1-10.
doi: 10.1186/1465-9921-7-1
[97] Datta S., Choudhury D., Das A., Mukherjee D Das., Dasgupta M., Bandopadhyay S., Chakrabarti G. Autophagy inhibition with chloroquine reverts paclitaxel resistance and attenuates metastatic potential in human nonsmall lung adenocarcinoma A549 cells via ROS mediated modulation of β-catenin pathway. Apoptosis, 2019; 24: 414-433.
doi: 10.1007/s10495-019-01526-y pmid: 30767087
[98] Liu S., Chen X., Chen R., Wang J., Zhu G., Jiang J., Wang H., Duan S., Huang J. Diagnostic role of Wnt pathway gene promoter methylation in non small cell lung cancer. Oncotarget, 2017; 8: 36354-36367.
doi: 10.18632/oncotarget.16754 pmid: 28422739
[99] Xu JH., Yang HP., Zhou XD., Wang HJ., Gong L., Tang CL. Role of wnt inhibitory factor-1 in inhibition of bisdemethoxycurcumin mediated epithelial-to-mesenchymal transition in highly metastatic lung cancer 95D cells. Chinese Medical Journal, 2015; 128: 1376-1383.
doi: 10.4103/0366-6999.156795 pmid: 25963361
[100] Stewart DJ., Chang DW., Ye Y., Spitz M., Lu C., Shu X., Wampfler JA., Marks RS., Garces YI., Yang P, et al. Wnt signaling pathway pharmacogenetics in non-small cell lung cancer. Pharmacogenomics Journal, 2014; 14: 509-522.
doi: 10.1038/tpj.2014.21
[101] Tennis MA., VanScoyk MM., Wilson LA., Kelley N., Winn RA. Methylation of wnt7a is modulated by dnmt1 and cigarette smoke condensate in non-small cell lung cancer. PLoS ONE, 2012; 7: 1-8.
doi: 10.1371/journal.pone.0032921 pmid: 22403725
[102] Stewart DJ. Wnt signaling pathway in non-small cell lung cancer. Journal of the National Cancer Institute, 2014; 106: 1-11.
doi: 10.2147/OTT.S217536 pmid: 31807001
[103] Coscio A., Chang DW., Roth JA., Ye Y., Gu J., Yang P., Wu X. Genetic variants of the Wnt signaling pathway as predictors of recurrence and survival in early-stage non-small cell lung cancer patients. Carcinogenesis, 2014; 35: 1284-1291.
doi: 10.1093/carcin/bgu034
[104] Huang C., Ma R., Xu Y., Li N., Li Z., Yue J., Li H., Guo Y., Qi D. Wnt2 promotes non-small cell lung cancer progression by activating WNT/β-catenin pathway. American journal of cancer research, 2015; 5: 1032-1046.
pmid: 26045984
[105] Yao L., Sun B., Zhao X., Zhao X., Gu Q., Dong X., Zheng Y., Sun J., Cheng R., Qi H. , et al. Overexpression of Wnt5a Promotes Angiogenesis in NSCLC. BioMed Research International, 2014; 2014: 1-8.
doi: 10.1155/2014/832562 pmid: 24999479
[106] Rapp J., Kiss E., Meggyes M., Szabo-Meleg E, Feller D., Smuk G., Laszlo T., Sarosi V., Molnar TF., Kvell K, et al. Increased Wnt5a in squamous cell lung carcinoma inhibits endothelial cell motility. BMC Cancer, 2016; 16: 1-16.
doi: 10.1186/s12885-015-2026-y pmid: 26721515
[107] Zhu L., Tang Z., Liu X., Gong H., Wang B. Wnt5a promotes epithelial-to-mesenchymal transition and metastasis in non-small-cell lung cancer. Bioscience Reports, 2017; 37: BSR20171092.
doi: 10.1042/BSR20171242 pmid: 29187583
[108] Ni S., Wang X., Zhu H., Feng J., Huang J., Lu C. Over-expression of ROR2 and Wnt5a cooperatively correlates with unfavorable prognosis in patients with non-small cell lung cancer. Oncotarget, 2015; 6.
doi: 10.18632/oncotarget.6878 pmid: 26942715
[109] Bartis D, Csongei V., Weich A., Kiss E., Barko S., Kovacs T., Avdicevic M., D’Souza VK, Rapp J., Kvell K. , et al. Down-regulation of canonical and up-regulation of non-canonical Wnt signalling in the carcinogenic process of squamous cell lung carcinoma. PLoS ONE, 2013; 8.
doi: 10.1371/journal.pone.0082806 pmid: 24482673
[110] Reno T., Wang J., Kim J., Zheng L., Raz D., Sztain T., Nardi I., Yun X., Shen B., Dai H. Triptolide inhibits Wnt signaling in NSCLC through upregulation of multiple Wnt inhibitory factors via epigenetic modifications to Histone H3. International Journal of Cancer, 2018; 143: 2470-2478.
doi: 10.1002/ijc.31756 pmid: 30006924
[111] Shieh JM, Tang YA., Hu FH., Huang WJ., Wang YJ., Jen J., Liao SY., Lu YH., Yeh YL., Wang TW, et al. A histone deacetylase inhibitor enhances expression of genes inhibiting Wnt pathway and augments activity of DNA demethylation reagent against nonsmall-cell lung cancer. International Journal of Cancer, 2017; 140: 2375-2386.
doi: 10.1002/ijc.30664 pmid: 28233309
[112] Xie J., Zhang Y., Hu X., Lv R., Xiao D., Jiang L., Bao Q. Norcantharidin inhibits Wnt signal pathway via promoter demethylation of WIF-1 in human non-small cell lung cancer. Medical Oncology, 2015; 32: 1-7.
doi: 10.1007/s12032-015-0592-0 pmid: 25814287
[113] Xing Z., Wang HY., Su WY., Liu YF., Wang XX., Zhan P., Lv TF., Song Y. Wnt3 knockdown sensitizes human non-small cell type lung cancer (NSCLC) cells to cisplatin via regulating the cell proliferation and apoptosis. European review for medical and pharmacological sciences, 2018; 22: 1323-1332.
doi: 10.26355/eurrev_201803_14474 pmid: 29565490
[114] Ren J., Wang R., Song H., Huang G., Chen L. Secreted frizzled related protein 1 modulates taxane resistance of human lung adenocarcinoma. Molecular Medicine, 2014: 164-178.
doi: 10.2119/molmed.2013.00149 pmid: 24643460
[115] Fong JT., Jacobs RJ., Moravec DN, Uppada SB., Botting GM., Nlend M., Puri N. Alternative signaling pathways as potential therapeutic targets for overcoming EGFR and c-Met inhibitor resistance in non-small cell lung cancer. PLoS ONE, 2013; 8.
doi: 10.1371/journal.pone.0082806 pmid: 24482673
[116] Bu X., Zhang X., Xu J., Yang H., Zhou X., Wang H., Gong L. Inhibition of DNA methyltransferase 1 by RNA interference reverses epithelial-mesenchymal transition in highly metastatic 95D lung cancer cells by inhibiting the Wnt signaling pathway. Oncology Letters, 2018; 15: 9242-9250.
doi: 10.3892/ol.2018.8449 pmid: 29805653
[117] Zhang K, Wang J., Yang L., Yuan Y-C., Tong TR., Wu J., Yun X., Bonner M., Pangeni R., Liu Z, et al. Targeting histone methyltransferase G9a inhibits growth and Wnt signaling pathway by epigenetically regulating HP1α and APC2 gene expression in non-small cell lung cancer. Molecular Cancer, 2018; 17: 1-15.
doi: 10.1186/s12943-017-0753-1 pmid: 29304823
[118] Sun Q., Ding L., Xiao J., Chien W., Lim S., Hattori N., Goodglick L., Chia D., Mah V., Alavi M, et al. SETDB1 accelerates tumorigenesis by regulating WNT signaling pathway. Journal of Pathology, 2015; 235: 559-570.
doi: 10.1002/path.4482 pmid: 25404354
[119] Lee SM., Park JY., Kim DS. Wif1 hypermethylation as unfavorable prognosis of non-small cell lung cancers with EGFR mutation. Molecules and Cells, 2013; 36: 69-73.
doi: 10.1007/s10059-013-0060-7
[120] Tan M., Wu J., Cai Y. Suppression of Wnt signaling by the miR-29 family is mediated by demethylation of WIF-1 in non-small-cell lung cancer. Biochemical and Biophysical Research Communications, 2013; 438: 673-679.
doi: 10.1016/j.bbrc.2013.07.123
[121] Zhang H., Hu B., Wang Z., Zhang F., Wei H. , Li L. miR-181c contributes to cisplatin resistance in non-small cell lung cancer cells by targeting Wnt inhibition factor 1. Cancer Chemotherapy and Pharmacology, 2017; 80: 973-984.
doi: 10.1007/s00280-017-3435-1 pmid: 28956120
[122] Zhang L., Cai J., Fang L., Huang Y., Li R., Xu X., Hu Z., Zhang L., Yang Y., Zhu X, et al. Simultaneous overactivation of Wnt/β-catenin and TGFβ signalling by miR-128-3p confers chemoresistance-associated metastasis in NSCLC. Nature Communications, 2017; 8: 1-18
doi: 10.1038/s41467-016-0009-6 pmid: 28232747
[123] Fan N., Zhang J., Cheng C., Zhang X., Feng J., Kong R. MicroRNA-384 represses the growth and invasion of non-small-cell lung cancer by targeting astrocyte elevated gene-1/Wnt signaling. Biomedicine and Pharmacotherapy, 2017; 95: 1331-1337.
doi: 10.1016/j.biopha.2017.08.143 pmid: 28938524
[124] Jiang W., Tian Y., Jiang S., Liu S., Zhao X., Tian D. MicroRNA-376c suppresses non-small-cell lung cancer cell growth and invasion by targeting LRH-1-mediated Wnt signaling pathway. Biochemical and Biophysical Research Communications, 2016; 473: 980-986.
doi: 10.1016/j.bbrc.2016.04.002 pmid: 27049310
[125] Xiao G., Zhang B., Meng J., Wang J., Xu C., Tang SC., Li X., Zhang J., Liang R., Ren H, et al. miR-367 stimulates Wnt cascade activation through degrading FBXW7 in NSCLC stem cells. Cell Cycle, , 2017; 16: 2374-2385.
doi: 10.1080/15384101.2017.1380136 pmid: 28949784
[126] Li C., Song G., Zhang S., Wang E., Cui Z. Wnt3a increases the metastatic potential of non-small cell lung cancer cells in vitro in part via its upregulation of Notch3. Oncology Reports, 2015; 33: 1207-1214.
doi: 10.3892/or.2014.3700 pmid: 25572698
[127] Li C., Zhang S., Lu Y., Zhang Y., Wang E., Cui Z. The roles of Notch3 on the cell proliferation and apoptosis induced by CHIR99021 in NSCLC cell lines: A functional link between Wnt and Notch signaling pathways. PLoS ONE, 2013; 8: 1-9.
doi: 10.1371/journal.pone.0084659 pmid: 24367688
No related articles found!
No Suggested Reading articles found!