Please wait a minute...
Journal of Molecular and Clinical Medicine   2018, Vol. 1 Issue (4): 195-200    DOI: 10.31083/j.jmcm.2018.04.401
Research article | Next articles
Facts and myths of selective casein kinase 1 ε inhibition
Adrián Puerta1, Alexis R. Galán1, Miguel X. Fernandes1, José M. Padrón1, *()
1 BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain.
Download:  PDF(501KB)  ( 110 ) Full text   ( 40 )
Export:  BibTeX | EndNote (RIS)      
Abstract  

In the scenario of drug discovery, the challenge is to fully understand and elucidate the mechanism of action to identify, with high resolution, the molecular determinant(s) targeted by the drug and responsible for its pharmacological activity. Cancer offers scientists an almost infinite arena of signaling pathways, targets and small molecules for therapeutic intervention. Among the multiple chemotherapeutic strategies to combat cancer, synthetic lethality remains underexplored. Casein kinase 1 ε (CK1ε) is a serine/threonine protein kinase that has been described as a synthetic lethal partner of the Wnt/β-catenin signaling pathway. Despite its potential as a desirable therapeutic target, only two selective inhibitors are available: PF-4800567 and GSD0054. Until the discovery of GSD0054, CK1ε inhibitors have been considered candidate drugs exclusively in psychopharmacology. In this review, we focus on three key points which we consider essential to define the scope of CK1ε as a synthetic lethal partner and its inhibitors as chemotherapeutics: the therapeutic relevance of this kinase, the scarce availability of selective inhibitors (due to the high homology with its sibling isoform CK1δ ), and the constraint of existing computational tools. This paper represents the first review covering the potential of CK1ε as a druggable target for cancer treatment.

Key words:  Anticancer drugs      casein kinase 1 epsilon      selective inhibitors      synthetic lethality     
Revised:  22 November 2018      Accepted:  23 November 2018      Published:  20 December 2018     
*Corresponding Author(s):  José M. Padrón     E-mail:  jmpadron@ull.es

Cite this article: 

Adrián Puerta, Alexis R. Galán, Miguel X. Fernandes, José M. Padrón. Facts and myths of selective casein kinase 1 ε inhibition. Journal of Molecular and Clinical Medicine , 2018, 1(4): 195-200.

URL: 

https://jmcm.imrpress.com/EN/10.31083/j.jmcm.2018.04.401     OR     https://jmcm.imrpress.com/EN/Y2018/V1/I4/195

Fig. 1.  Targeting synthetic lethal partners of mutated cancer genes specifically kill cancer cells bearing the inactivating mutations but spare normal cells. In the example shown here, pathways A and B are both intact in normal cells, whereas pathway A is defective in cancer cells. Inhibitors targeting pathway A will cause normal cells to survive through pathway B, whilst tumor cells cannot recover and succumb to this drug treatment scheme. In contrast, inhibitor of pathway B had no differential effect on both types of cells.

Fig. 2.  Chemical structure of selective CK1ε inhibitors (ICK1ε), selective CK1δ inhibitors (ICK1δ ), and dual inhibitors (ICK1δ /ε).

Table 1  Selectivity of casein kinase 1 inhibitors
Compound Selectivity Measure CK1ε CK1δ Ref.
GSD0054 ε %Ctrl 27% 93% [35, 36]
PF-4800567 ε IC50 32 nM 711 nM [37]
SR-3029 δ IC50 260 nM 44 nM [38]
LH846 δ IC50 1.3 μM 290 nM [39]
PF-670462 δ /ε IC50 7.7 nM 14 nM [40]
PF-5006739 δ /ε IC50 17 nM 3.9 nM [41]
IC261 δ /ε IC50 0.6-1.4 μM 0.7-1.3 μM [42]
Table 2  Docking scores (kcal/mol) of casein kinase 1 inhibitors against CK1ε (PDB ID: 4HNI) and CK1δ (PDB ID: 3UYT)
Compound CK1ε CK1δ
GSD0054 -20.6 -18.3
PF-4800567 -22.4 -6.7
SR-3029 -23.2 -16.8
LH846 -18.7 -18.1
PF-670462 -16.6 -14.7
PF-5006739 -18.7 -12.4
IC261 -17.3 -10.6
[1] McLornan DP, List A, Mufti GJ. Applying synthetic lethality for the selective targeting of cancer. The New England Journal of Medicine, 2014; 371(18): 1725-1735.
doi: 10.1056/NEJMra1407390 pmid: 25354106
[2] Rehman FL, Lord CJ, Ashworth A. Synthetic lethal approaches to breast cancer therapy. Nature Reviews Clinical Oncology, 2010; 7(12): 718-724.
doi: 10.1038/nrclinonc.2010.172 pmid: 20956981
[3] Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 2005; 434: 917-921.
[4] Toyoshima M, Howie HL, Imakura M, Walsh RM, Annis JE, Chang AN, et al. Functional genomics identifies therapeutic targets for MYC-driven cancer. Proceedings of the National Academy of Sciences, 2012; 109: 9545-9550.
doi: 10.1073/pnas.1121119109
[5] Kim SY, Dunn IF, Firestein R, Gupta P, Wardwell L, Repich K, et al. CK1epsilon is required for breast cancers dependent on beta-catenin activity. PLoS One, 2010; 5: e8979.
doi: 10.1371/journal.pone.0008979 pmid: 20126544
[6] Swiatek W, Tsai IC, Klimowski L, Pepler A, Barnette J, Yost HJ, et al. Regulation of casein kinase I epsilon activity by Wnt signaling. Journal of Biological Chemistry, 2004; 279: 13011-13017.
doi: 10.1074/jbc.M304682200 pmid: 14722104
[7] Shin S, Wolgamott L, Roux PP, Yoon SO. Casein kinase 1epsilon promotes cell proliferation by regulating mRNA translation. Cancer Research, 2014; 74: 201-211.
doi: 10.1158/0008-5472.CAN-13-1175 pmid: 24247720
[8] Lin SH, Lin YM, Yeh CM, Chen CJ, Chen MW, Hung HF, et al. Casein kinase 1 epsilon expression predicts poorer prognosis in low T-stage oral cancer patients. International Journal of Molecular Sciences, 2014; 15: 2876-28791.
doi: 10.3390/ijms15022876 pmid: 3958887
[9] Yim DG, Ghosh S, Guy GR, Virshup DM. Casein kinase 1 regulates Sprouty2 in FGF-ERK signaling. Oncogene, 2015; 34: 474-484.
doi: 10.1038/onc.2013.564 pmid: 24469046
[10] Cui J, Jiang W, Wang S, Wang L, Xie K. Role of Wnt/β-catenin signaling in drug resistance of pancreatic cancer. Current Pharmaceutical Design, 2012; 18(17): 2464-2471.
doi: 10.2174/13816128112092464 pmid: 22372504
[11] Hallett RM, Kondratyev MK, Giacomelli AO, Nixon AM, Girgis-Gabardo A, Ilieva D, et al. Small molecule antagonists of the Wnt/β-catenin signaling pathway target breast tumor-initiating cells in a Her2/Neu mouse model of breast cancer. PLoS One, 2012; 7(3): e33976.
doi: 10.1371/journal.pone.0033976 pmid: 22470504
[12] Nagaraj AB, Joseph P, Kovalenko O, Singh S, Armstrong A, Redline R, et al. Critical role of Wnt/β-catenin signaling in driving epithelial ovarian cancer platinum resistance. Oncotarget, 2015; 6(27): 23720-23734.
doi: 10.18632/oncotarget.4690 pmid: 4695147
[13] Barghout SH, Zepeda N, Xu Z, Steed H, Lee CH, Fu Y. Elevated β-catenin activity contributes to carboplatin resistance in A2780cp ovarian cancer cells. Biochemical and Biophysical Research Communications, 2015; 468(1-2): 173-178.
doi: 10.1016/j.bbrc.2015.10.138 pmid: 26522223
[14] Bjorklund CC, Ma W, Wang ZQ, Davis RE, Kuhn DJ, Kornblau SM, et al. Evidence of a role for activation of Wnt/beta-catenin signaling in the resistance of plasma cells to lenalidomide. Journal of Biological Chemistry, 2011; 286(13): 11009-11020.
doi: 10.1074/jbc.M110.180208 pmid: 21189262
[15] Monastyrskyi A, Nilchan N, Quereda V, Noguchi Y, Ruiz C, Grant W, et al. Development of dual casein kinase 1δ /1ε (CK1δ /ε) inhibitors for treatment of breast cancer. Bioorganic &, 2018; Medicinal Chemistry 26(3), 590-602.
doi: 10.1016/j.bmc.2017.12.020 pmid: 29289448
[16] Morgenstern Y, Das Adhikari U, Ayyash M, Elyada E, Tóth B, Moor A, et al. Casein kinase 1-epsilon or 1-delta required for Wnt-mediated intestinal stem cell maintenance. The EMBO Journal, 2017; 36(20): 3046-3061.
doi: 10.15252/embj.201696253 pmid: 28963394
[17] Deng C, Lipstein MR, Scotto L, Jirau Serrano XO, Mangone MA, Li S, et al. Silencing c-Myc translation as a therapeutic strategy through targeting PI3Kδ and CK1ε in hematological malignancies. Blood, 2017; 129(1): 88-99.
doi: 10.1182/blood-2016-08-731240 pmid: 27784673
[18] Qiong W, Xiaofeng G, Junfang W. Transforming growth factor- β1 (TGF-β1) induces mouse precartilaginous stem cell differentiation through TGFRII-CK1ε-β-catenin signalling. International Journal of Experimental Pathology, 2018; 99(3): 113-120.
[19] Lin SH, Yeh CM, Hsieh MJ, Lin YM, Chen MW, Chen CJ, et al. Low cytoplasmic casein kinase 1 epsilon expression predicts poor prognosis in patients with hepatocellular carcinoma. Tumor Biology, 2016; 37(3): 3997-4005.
doi: 10.1007/s13277-015-4225-1 pmid: 26482619
[20] Shin S, Wolgamott L, Roux PP, Yoon SO. Casein kinase 1 ε promotes cell proliferation by regulating mRNA translation. Cancer Research, 2014; 74(1): 201-211.
doi: 10.1158/0008-5472.CAN-13-1175 pmid: 24247720
[21] Ye LC, Jiang C, Bai J, Jiang J, Hong HF, Qiu LS. Knockdown of casein kinase 1e inhibits cell proliferation and invasion of colorectal cancer cells via inhibition of the Wnt/β-catenin signaling. Journal of Biological Regulators and Homeostatic Agents, 2015; 29(2): 307-315.
pmid: 26122218
[22] Lopez-Guerra JL, Verdugo-Sivianes EM, Otero-Albiol D, Vieites B, Ortiz-Gordillo MJ, De León JM, et al. High casein kinase 1 epsilon levels are correlated with better prognosis in subsets of patients with breast cancer. Oncotarget, 2015; 6(30): 30343-30356.
doi: 10.18632/oncotarget.4850 pmid: 26327509
[23] Sakanaka C, Leong P, Xu L, Harrison SD, Williams LT. Casein kinase I ε in the Wnt pathway, regulation of beta-catenin function. Proceedings of the National Academy of Sciences, 1999; 96(22): 12548-12552.
doi: 10.1073/pnas.96.22.12548 pmid: 10535959
[24] Ko CH, Takahashi JS. Molecular components of the mammalian circa-dian clock. Human Molecular Genetics, 2006; 15(SUPPL. 2): R271-R277.
doi: 10.1007/978-3-642-25950-0_1 pmid: 3762864
[25] Knippschild U, Krüger M, Richter J, Xu P, García-Reyes B, Peifer C, et al. The CK1 family: Contribution to cellular stress response and its role in carcinogenesis. Frontiers in Oncology, 2014; 4: 1-32.
doi: 10.3389/fonc.2014.00096 pmid: 4032983
[26] Rodriguez N, Yang J, Hasselblatt K, Liu S, Zhou Y, Rauh-Hain JA, et al. Casein kinase I epsilon interacts with mitochondrial proteins for the growth and survival of human ovarian cancer cells. EMBO Molecular Medicine, 2012; 4(9): 952-963.
doi: 10.1002/emmm.201101094 pmid: 3491827
[27] Modak C, Chai J. Potential of casein kinase I in digestive cancer screening. World Journal of Gastrointestinal Oncology, 2009; 1(1): 26-33.
doi: 10.4251/wjgo.v1.i1.26 pmid: 2999098
[28] Yang WS, Stockwell BR. Inhibition of casein kinase 1-epsilon induces cancer-cell-selective PERIOD2-dependent growth arrest. Genome Biology, 2008; 9(6): R92.
doi: 10.1186/gb-2008-9-6-r92 pmid: 18518968
[29] Varghese RT, Young S, Pham L, Liang Y, Pridham KJ, Guo S, et al. Casein kinase 1 epsilon regulates glioblastoma cell survival. Scientific Reports, 2018; 8(1): 13621.
[30] Richter J, Ullah K, Xu P, Alscher V, Blatz A, Peifer C, et al. Effects of altered expression and activity levels of CK1δ and ε on tumor growth and survival of colorectal cancer patients. International Journal of Cancer, 2015; 136(12): 2799-2810.
doi: 10.1002/ijc.29346 pmid: 25404202
[31] Foldynová-Trantírková S, Sekyrová P, Tmejová K, Brumovská E, Bernatík O, Blankenfeldt W, et al. Breast cancer-specific mutations in CK1ε inhibit Wnt/β-catenin and activate the Wnt/Rac1/JNK and NFAT pathways to decrease cell adhesion and promote cell migration. Breast Cancer Research, 2010; 12(3): R30.
[32] Knippschild U, Gocht A, Wolff S, Huber N, Löhler J, Stöter M . The casein kinase 1 family: Participation in multiple cellular processes in eukaryotes. Cellular Signalling, 2005; 17(6): 675-689.
doi: 10.1016/j.cellsig.2004.12.011 pmid: 15722192
[33] Cheong JK, Hung NT, Wang H, Tan P, Voorhoeve PM, Lee SH, et al. IC261 induces cell cycle arrest and apoptosis of human cancer cells via CK1δ /ε and Wnt/β-catenin independent inhibition of mitotic spindle formation. Oncogene, 2011; 30(22): 2558-2569.
doi: 10.1038/onc.2010.627 pmid: 21258417
[34] Schittek B, Sinnberg T. Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis. Molecular Cancer, 2014; 13(1): 1-14.
doi: 10.1186/1476-4598-13-1 pmid: 24387052
[35] Silveira-Dorta G, Sousa IJ, Fernandes MX, Martín VS, Padrón JM. Synthesis and identification of unprecedented selective inhibitors of CK1 ε. European Journal of Medicinal Chemistry, 2015; 96: 308-317.
doi: 10.1016/j.ejmech.2015.03.046 pmid: 25899335
[36] Lagunes I, Martín-Batista E, Silvera-Dorta G, Fernandes MX, Padrón JM. Differential mechanism of action of the CK1 ε inhibitor GSD0054. Journal of Molecular and Clinical Medicine, 2018; 1(2): 77-84.
[37] Walton KM, Fisher K, Rubitski D, Marconi M, Meng QJ, Sládek M, Adams J, et al. Selective inhibition of casein kinase 1 epsilon minimally alters circadian clock period. Journal of Pharmacology and Experimental Therapeutics, 2009; 330(2): 430-9.
doi: 10.1124/jpet.109.151415
[38] Bibian M, Rahaim RJ, Choi JY, Noguchi Y, Schürer S, Chen W, et al. Development of highly selective casein kinase 1δ /1ε( CK1δ /ε) inhibitors with potent antiproliferative properties. Bioorganic & Medicinal Chemistry Letters, 2013; 23(15): 4374-4380.
doi: 10.1016/j.bmcl.2013.05.075 pmid: 3783656
[39] Lee JW, Hirota T, Peters EC, Garcia M, Gonzalez R, Cho CY, et al. A small molecule modulates circadian rhythms through phosphorylation of the period protein. Angewandte Chemie International Edition, 2011; 50(45): 10608-11.
doi: 10.1002/anie.201103915 pmid: 3755734
[40] Badura L, Swanson T, Adamowicz W, Adams J, Cianfrogna J, Fisher K, et al. An inhibitor of casein kinase I epsilon induces phase delays in circadian rhythms under free-running and entrained conditions. Journal of Pharmacology and Experimental Therapeutics, 2007; 322(2): 730-738.
doi: 10.1124/jpet.107.122846 pmid: 17502429
[41] Wager TT, Chandrasekaran RY, Bradley J, Rubitski D, Berke H, Mente S, et al. Casein kinase 1δ /ε inhibitor PF-5006739 attenuates opioid drug-seeking behavior. ACS Chemical Neuroscience, 2014; 5(12): 1253-1265.
doi: 10.1021/cn500201x pmid: 25299732
[42] Behrend L, Milne DM, Stöter M, Deppert W, Campbell LE, Meek DW, et al. IC261, a specific inhibitor of the protein kinases casein kinase 1-delta and-epsilon, triggers the mitotic checkpoint and induces p53-dependent postmitotic effects. Oncogene, 2000; 19(47): 5303-5313.
[43] Bischof J, Leban J, Zaja M, Grothey A, Radunsky B, Othersen O, et al. 2-Benzamido-N-( 1H-benzo[d]imidazol-2-yl)thiazole-4-carboxamide derivatives as potent inhibitors of CK1δ /ε. Amino Acids, 2012; 43(4): 1577-1591.
doi: 10.1007/s00726-012-1234-x pmid: 22331384
[44] Etchegaray JP, Yu EA, Indic P, Dallmann R, Weaver DR. Casein kinase 1 delta (CK1delta) regulates period length of the mouse suprachiasmatic circadian clock in vitro. PLoS One, 2010; 5(4): e10303.
doi: 10.1371/journal.pone.0010303 pmid: 2858662
[45] Meng QJ, Maywood ES, Bechtold DA, Lu WQ, Li J, Gibbs JE, et al. Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proceedings of the National Academy of Sciences, 2010; 107(34): 15240-15245.
doi: 10.1073/pnas.1005101107 pmid: 20696890
[46] Madoux F, Simanski S, Chase P, Mishra JK, Roush WR, Ayad NG, et al. An ultra-high throughput cell-based screen for wee1 degradation inhibitors. Journal of Biomolecular Screening, 2010; 15(8): 907-17.
doi: 10.1177/1087057110375848 pmid: 20660794
[47] Rosenberg LH, Lafitte M, Quereda V, Grant W, Chen W, Bibian M , et al. Therapeutic targeting of casein kinase 1δ in breast cancer. Science Translational Medicine. Therapeutic targeting of casein kinase 1δ in breast cancer. Science Translational Medicine, 2015; 7(318): 318ra202.
[48] Su Z, Song J, Wang Z, Zhou L, Xia Y, Yu S, et al. Tumor promoter TPA activates Wnt/β-catenin signaling in a casein kinase 1-dependent manner. Proceedings of the National Academy of Sciences, 2018; 115(32): E7522-E7531.
[49] Causton HC, Feeney KA, Ziegler CA, O’Neill JS. Metabolic cycles in yeast share features conserved among circadian rhythms. Current Biology, 2015; 25(8): 1056-1062.
doi: 10.1016/j.cub.2015.02.035 pmid: 25866393
[50] Zemp I, Wandrey F, Rao S, Ashiono C, Wyler E, Montellese C, et al. CK1δ and CK1ε are components of human 40S subunit precursors required for cytoplasmic 40S maturation. Journal of Cell Science, 2014; 127(Pt 6), 1242-1253.
doi: 10.1242/jcs.138719 pmid: 24424021
[51] Greer YE, Gao B, Yang Y, Nussenzweig A, Rubin JS. Lack of casein kinase 1 delta promotes genomic instability-the accumulation of DNA damage and down-regulation of checkpoint kinase 1. PLoS One, 2017; 12(1): e0170903.
doi: 10.1371/journal.pone.0170903 pmid: 28125685
[52] Sprouse J, Reynolds L, Swanson TA, Engwall M. Inhibition of casein kinase I epsilon/delta produces phase shifts in the circadian rhythms of Cynomolgus monkeys. Psychopharmacology, 2009; 204(4): 735-742.
doi: 10.1007/s00213-009-1503-x pmid: 19277609
[53] Bryant CD, Graham ME, Distler MG, Munoz MB, Li D, Vezina P, et al. A role for casein kinase 1 epsilon in the locomotor stimulant response to methamphetamine. Psychopharmacology, 2009; 203(4): 703-711.
doi: 10.1007/s00213-008-1417-z pmid: 2729782
[54] Cunningham PS, Ahern SA, Smith LC, da Silva Santos CS, Wager TT, Bechtold DA. Targeting of the circadian clock via CK1δ /ε to improve glucose homeostasis in obesity. Scientific Reports, 2016; 6: 29983.
doi: 10.1038/srep29983 pmid: 4954991
[55] Lather V, Fernandes MX. Comparative QSAR analyses of competitive CYP2C9 inhibitors using three-dimensional molecular descriptors. Chemical Biology & Drug Design, 2011; 78(1): 112-123.
doi: 10.1111/j.1747-0285.2011.01106.x pmid: 21477091
[1] Irene Lagunes, Elva Martín-Batista, Gastón Silveira-Dorta, Miguel X. Fernandes, José M. Padrón. Differential mechanism of action of the CK1$\varepsilon $ inhibitor GSD0054[J]. Journal of Molecular and Clinical Medicine , 2018, 1(2): 77-84.
[1] Evgeniy A. Cheremushkin,Nadezda E. Petrenko,Irina A. Yakovenko,Sergei A. Gordeev,Nikolay N. Alipov,Olga V. Sergeeva. Human neurophysiological markers of high anxiety level during preparation for visual recognition[J]. Journal of Integrative Neuroscience, 2018, 17(3): 193 -202 .
[2] Elena L. Teslenko,Elena V. Damyanovich,Ilija Damjanović,Zoran Gačić,Boris K. Baziyan. Saccadic dysfunction in patients with hypoxic-ischemic encephalopathy[J]. Journal of Integrative Neuroscience, 2018, 17(3): 211 -220 .
[3] Andrey F. Iznak,Ekaterina V. Iznak,Tatiana P. Klyushnik,Georgy M. Kobel'kov,Elena V. Damjanovich,Igor V. Oleichik,Lilia I. Abramova. Neurobiological parameters in quantitative prediction of treatment outcome in schizophrenic patients[J]. Journal of Integrative Neuroscience, 2018, 17(3): 221 -228 .
[4] Renata S. Marcomini,Ana Claúdia F. Frizzo,Viviane B. de Góes,Simone F. Regaçone,David M. Garner,Rodrigo D. Raimundo,Fernando R. Oliveira,Vitor E. Valenti. Association between heart rhythm and cortical sound processing[J]. Journal of Integrative Neuroscience, 2018, 17(3): 229 -236 .
[5] Elham Askari,Seyed Kamaledin Setarehdan,Ali Sheikhani,Mohammad Reza Mohammadi,Mohammad Teshnehlab. Computational model for detection of abnormal brain connections in children with autism[J]. Journal of Integrative Neuroscience, 2018, 17(3): 237 -248 .
[6] J. Meléndez-Gallardo,A. Eblen-Zajjur. Thermo-dependence of noxious mechanical heterotopic stimulation-dependent modulation of the spinal dorsal horn response to somatosensory stimulation[J]. Journal of Integrative Neuroscience, 2018, 17(3): 249 -256 .
[7] Faraj Al-Marri, Faruque Reza, Tahamina Begum, Wan Hazabbah Wan Hitam, Goh Khean Jin, Jing Xiang. Neural activation patterns and connectivity in visual attention during number and non-number processing: An ERP study using Ishihara pseudoisochromatic plates[J]. Journal of Integrative Neuroscience, 2018, 17(3): 257 -270 .
[8] Xian Liu,Chunyu Zhao,Chengxia Sun,Zhanming Chen,Tasawar Hayat,Ahmed Alsaedi. A new closed-loop strategy for detection and modulation of epileptiform spikes based on cross approximate entropy[J]. Journal of Integrative Neuroscience, 2018, 17(3): 271 -280 .
[9] Marie Charlotte Gandolphe,Jean Louis Nandrino,Gérald Delelis,Claire Ducro,Audrey Lavallee,Xavier Saloppe,Ahmed A. Moustafa,Mohamad El Haj. Positive facial expressions during retrieval of self-defining memories[J]. Journal of Integrative Neuroscience, 2018, 17(3): 281 -286 .
[10] Alexander Fedotchev,Grigoriy Radchenko,Anna Zemlianaia. Music of the brain approach to health protection[J]. Journal of Integrative Neuroscience, 2018, 17(3): 291 -296 .