Please wait a minute...
Journal of Molecular and Clinical Medicine  2018, Vol. 1 Issue (3): 169-176    DOI: 10.31083/j.jmcm.2018.03.006
Research article Previous articles | Next articles
Lateral Guided Bone Regeneration Using a Novel Synthetic Bioresorbable Membrane: A Two Center Prospective Randomized Controlled Trial Running title: A novel membrane for ridge augmentation
Michal Halperin-Sternfeld1, 2, *(), Hadar Zigdon-Giladi1, 3, Lior Shapira4, Asaf Wilensky4
1 Department of periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa 31096, Israel
2 Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
3 Faculty of Medicine, Technion -- Israel Institute of Technology, Haifa, 31096, Israel
4 Department of Periodontology, Faculty of Dental Medicine, Hebrew University and Hadassah Medical Center, Jerusalem 91120, Israel
Download:  PDF(2436KB)  ( 400 ) Full text   ( 34 )
Export:  BibTeX | EndNote (RIS)      
Abstract  

The aim of this study was to evaluate the outcomes of lateral guided bone regeneration (GBR) using a novel resorbable synthetic polyethylene-glycol/methacrylate (PEG/MET) membrane compared to a non-cross-linked collagen membrane (CM). Twenty-eight patients with a potential implant site exhibiting insufficient bone width of $\leq$ 5 mm were included. Ridge width was measured intraoperatively at 1 mm and 4 mm apical to the crest and via cone-beam computed tomography at baseline and 6 months following GBR using either a PEG/MET or a CM in conjunction with an allograft. During implant placement, core biopsies were harvested and analyzed histomorphometrically. Width changes were calculated. Differences between groups were analyzed using two-sided t-test and Mann-Whitney U-test. The PEG/MET membrane was moldable and exhibited higher strength and stability compared to the CM. Nevertheless, it displayed higher exposure rate of 12/15, compared to 2/13 in the CM sites. At the time of implant insertion, 6 months following GBR, significant gain in bone width was observed in both groups. Mean ridge width at 1 mm and 4 mm apical to the crest was increased significantly from 2.06 $\pm$ 0.77 mm and 3.84 $\pm$ 1.23 mm to 3.84 $\pm$ 1.52 mm and 6.06 $\pm$ 2.03 mm ($p=$ 0.0006 and $p=$ 0.0009, respectively), with no clinical or radiographic differences between groups. Experimental sites contained more residual scaffold material than the controls (17.4 $\pm$ 3.3% and 8.6 $\pm$ 2.0%, $p=$ 0.0566). However, bone and connective tissue area fraction were not statistically different between the groups. Overall, despite the higher exposure rate, the new PEG/MET membrane was as successful as a standard collagen membrane in lateral GBR and may have potential use in bone augmentation procedures. This study suggests the feasibility of synthetic membranes, which are not associated with disease transmission, as an attractive alternative to the commonly used CM of bovine or porcine origin.

Key words:  Alveolar ridge reconstruction      Bone augmentation      Guided bone regeneration      Randomized controlled trial      Bioresorbable membrane     
Submitted:  15 July 2018      Revised:  17 August 2018      Accepted:  24 August 2018      Published:  20 September 2018     
*Corresponding Author(s):  Michal Halperin-Sternfeld     E-mail:  michal4@mail.tau.ac.il

Cite this article: 

Michal Halperin-Sternfeld, Hadar Zigdon-Giladi, Lior Shapira, Asaf Wilensky. Lateral Guided Bone Regeneration Using a Novel Synthetic Bioresorbable Membrane: A Two Center Prospective Randomized Controlled Trial Running title: A novel membrane for ridge augmentation. Journal of Molecular and Clinical Medicine, 2018, 1(3): 169-176.

URL: 

https://jmcm.imrpress.com/EN/10.31083/j.jmcm.2018.03.006     OR     https://jmcm.imrpress.com/EN/Y2018/V1/I3/169

Fig. 1.  Clinical photographs illustrate the treatment rendered to the experimental group. (a) Insuffiecint alveolar bone ridge of 3 mm at baseline. (b, c) AMCA RegeneCure? barrier membrane before and after trimming. (d) Decortication of the buccal cortical plate. (e) Anchorage of AMCA RegeneCure? barrier membrane with a tack. (f) Application of OraGRAFT? Cortical particulate mineralized FDBA, LifeNet. (g) Placement of AMCA RegeneCure? barrier membrane over the bone substitute. (h) Augmentation site closure using ePTFE sutures.

Table 1  Clinical and radiographic horizontal alveolar ridge width at baseline and 6 months following augmentation
Variable Mean (mm) S.D. (mm) Minimum (mm) Maximum (mm) Median (mm)
Baseline clinical bone width at 1 mm 2.06 0.77 1.0 3.0 2.0
Baseline clinical bone width at 4 mm 3.84 1.23 2.0 6.0 4.0
Final clinical bone width at 1 mm 3.84 1.52 1.5 7.5 3.75
Final clinical bone width at 4 mm 6.06 2.03 2.0 11.0 6.0
Baseline radiographic width at 1 mm 2.86 1.24 1.0 6.0 3.0
Baseline radiographic width at 4 mm 4.77 1.49 2.0 5.0 7.0
Final radiographic width at 1 mm 4.75 1.49 2.0 8.0 5.0
Final radiographic width at 4 mm 7.04 1.93 3.0 7.25 11.5
Table 2  Clinical and radiographic horizontal alveolar ridge width and the change 6 months following augmentation
Variable N Mean baseline (士 SE) mm Mean final(士 SE) mm Mean changes (士 SE) mm p-value*
Clinical bone width at 1 mm 16 2.06 士 0.19 3.84 士 0.38 1.78 士 0.41 0.0006
Clinical bone width at 4 mm 16 3.84 士 0.31 6.06 士 0.51 2.22 士 0.54 0.0009
Radiographic bone width at 1 mm 28 2.86 士 0.23 4.75 士 0.28 1.89 士 0.29 0.0001
Radiographic bone width at 4 mm 28 4.77 士 0.28 7.04 士 0.36 2.27 士 0.32 0.0001
Table 3  Clinical and radiographic changes in alveolar ridge width: Comparison between treatment groups
Variable Mean (士 SE)changes N Mean (士 SE) changes (mm) N p-value*
experimental group control group
Clinical bone width change at 1 mm 2.00 士 0.60 8 1.56 士 0.59 8 0.5215
Clinical bone width change at 4 mm 2.06 士 0.68 8 2.19 士 0.71 8 1.000
% Clinical bone width change at 1 mm 144.8 士 59 8 86.5 士 29 8 0.7105
% Clinical bone width change at 4 mm 60.13 士 26 8 53.75 士 29 8 0.7518
Radiographic width change at 1 mm 1.80 士 0.43 15 2.00 士 0.42 13 0.6243
Radiographic width change at 4 mm 1.90 士 0.41 15 2.69 士 0.50 13 0.2650
% Radiographic width change at 1 mm 106.6 士 39 15 90.4 士 22.5 13 0.4730
% Radiographic width change at 4 mm 51.60 士 15.6 15 65.7 士 15.8 13 0.1645
Fig. 2.  A representative image of H&E histological slide obtained from control group (scale bar 500 $\mu $m). Intimate contact between newly formed vital bone (arrow pointing on osteocytes) and residual scaffold (asterisk) was observed. Bone marrow (BM) spaces were also present.

Fig. 3.  Nonspecific inflammatory infiltrate was observed in the connective tissue (coronal part) of two biopsies obtained from the experimental group.

Table 4  Comparison between treatment groups: Histological variables
Variable Mean 士 sechangesexperimentalgroup N Mean 士 SE changes control group N p-value*
% Vital bone 58.1 士 7.9 7 53.3 士 6.7 9 0.5245
% Residual scaffold 17.4 士 3.3 7 8.6 士 2.0 9 0.0566
% Connective tissue 4.7 士 4.7 7 14.3 士 6.8 9 0.2467
% Bone marrow 7.1 士 3.3 7 7.3 士 5.2 9 0.5598
[1] Hammerle CH, Jung RE . Bone augmentation by means of barrier membranes. Periodontol 2000, 2003; 33:36-53.
doi: 10.1046/j.0906-6713.2003.03304.x pmid: 12950840
[2] Larsson L, Decker AM, Nibali L, Pilipchuk SP, Berglundh T, Giannobile WV . Regenerative medicine for periodontal and peri-implant diseases. J Dent Res, 2016; 95:255-66.
doi: 10.1177/0022034515618887 pmid: 26608580
[3] Fiorellini JP, Nevins ML . Localized ridge augmentation/preservation. A systematic review. Ann Periodontol, 2003; 8:321-7.
doi: 10.1902/annals.2003.8.1.321 pmid: 14971259
[4] Hammerle CH, Karring T . Guided bone regeneration at oral implant sites. Periodontol 2000, 1998; 17:151-75.
doi: 10.1111/j.1600-0757.1998.tb00132.x pmid: 10337322
[5] von Arx T, Buser D . Horizontal ridge augmentation using autogenous block grafts and the guided bone regeneration technique with collagen membranes: A clinical study with 42 patients. Clin Oral Implants Res, 2006; 17:359-66.
doi: 10.1111/j.1600-0501.2005.01234.x pmid: 16907765
[6] Urban IA, Nagursky H, Lozada JL . Horizontal ridge augmentation with a resorbable membrane and particulated autogenous bone with or without anorganic bovine bone-derived mineral: A prospective case series in 22 patients. Int J Oral Maxillofac Implants, 2011; 26:404-14.
doi: 10.1563/AAID-JOI-D-09-00145.1 pmid: 21483894
[7] Chappuis V, Cavusoglu Y , Buser D, von Arx T. Lateral ridge augmentation using autogenous block grafts and guided bone regeneration: A 10-Year prospective case series study. Clin Implant Dent Relat Res, 2017; 19:85-96.
doi: 10.1111/cid.12438 pmid: 27476677
[8] Donos N, Mardas N, Chadha V . Clinical outcomes of implants following lateral bone augmentation: Systematic assessment of available options (barrier membranes, bone grafts, split osteotomy). J Clin Periodontol, 2008; 35:173-202.
doi: 10.1111/j.1600-051X.2008.01269.x pmid: 18724850
[9] Sanz-Sanchez I, Ortiz-Vigon A, Sanz-Martin I, Figuero E, Sanz M . Effectiveness of lateral bone augmentation on the alveolar crest dimension: A systematic review and meta-analysis. J Dent Res, 2015; 94:128S-42S.
doi: 10.3109/14767058.2015.1107896 pmid: 26215467
[10] Dahlin C, Sennerby L, Lekholm U, Linde A, Nyman S . Generation of new bone around titanium implants using a membrane technique: An experimental study in rabbits. Int J Oral Maxillofac Implants, 1989; 4:19-25.
pmid: 2599578
[11] Fugazzotto PA . Report of 302 consecutive ridge augmentation procedures: Technical considerations and clinical results. Int J Oral Maxillofac Implants, 1998; 13:358-68.
doi: 10.1038/sj.dmfr.4600349 pmid: 9638006
[12] Buser D, Dula K, Lang NP, Nyman S . Long-term stability of osseointegrated implants in bone regenerated with the membrane technique. 5-year results of a prospective study with 12 implants. Clin Oral Implants Res, 1996; 7:175-83.
doi: 10.1034/j.1600-0501.1996.070212.x pmid: 9002837
[13] Buser D, Ingimarsson S, Dula K, Lussi A, Hirt HP, Belser UC . Long-term stability of osseointegrated implants in augmented bone: A 5-year prospective study in partially edentulous patients. Int J Periodontics Restorative Dent, 2002; 22:109-17.
doi: 10.1054/ijom.2002.0227 pmid: 12019706
[14] Buser D, Dula K, Hess D, Hirt HP, Belser UC . Localized ridge augmentation with autografts and barrier membranes. Periodontol 2000, 1999; 19:151-63.
doi: 10.1111/j.1600-0757.1999.tb00153.x pmid: 10321222
[15] Buser D, Dula K, Hirt HP , Schenk RK. Lateral ridge augmentation using autografts and barrier membranes: A clinical study with 40 partially edentulous patients. J Oral Maxillofac Surg, 1996; 54: 420-32. discussion 432-3.
doi: 10.1016/S0278-2391(96)90114-7 pmid: 8600258
[16] Simion M, Baldoni M, Rossi P, Zaffe D . A comparative study of the effectiveness of e-PTFE membranes with and without early exposure during the healing period. Int J Periodontics Restorative Dent, 1994; 14:166-80.
pmid: 7928132
[17] Zitzmann NU, Naef R, Scharer P . Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration. Int J Oral Maxillofac Implants, 1997; 12:844-52.
doi: 10.1111/j.1365-2591.1997.tb00735.x pmid: 9425767
[18] McAllister BS, Haghighat K . Bone augmentation techniques. J Periodontol, 2007; 78:377-96.
[19] Thoma DS, Weber FE, Bienz SP, Ge Y, Hammerle CH, Jung RE . Biodegradation and tissue integration of various polyethylene glycol matrices: a comparative study in rabbits. Clin Oral Implants Res, 2017; e244-51.
doi: 10.1111/clr.13004
[20] Moses O, Pitaru S, Artzi Z, Nemcovsky CE . Healing of dehiscence-type defects in implants placed together with different barrier membranes: A comparative clinical study. Clin Oral Implants Res, 2005; 16:210-9.
doi: 10.1111/j.1600-0501.2004.01100.x pmid: 15777331
[21] Rothamel D, Schwarz F, Sager M, Herten M, Sculean A, Becker J . Biodegradation of differently cross-linked collagen membranes: An experimental study in the rat. Clin Oral Implants Res, 2005; 16:369-78.
doi: 10.1111/j.1600-0501.2005.01108.x pmid: 15877758
[22] Wang HL, Boyapati L . "PASS" principles for predictable bone regeneration. Implant Dent, 2006; 15:8-17.
doi: 10.1097/01.id.0000204762.39826.0f pmid: 16569956
[23] Hardwick R, Hayes BK, Flynn C . Devices for dentoalveolar regeneration: An up-to-date literature review. J Periodontol, 1995; 66:495-505.
doi: 10.1902/jop.1995.66.6.495 pmid: 7562339
[24] Sela MN, Kohavi D, Krausz E, Steinberg D, Rosen G . Enzymatic degradation of collagen-guided tissue regeneration membranes by periodontal bacteria. Clin Oral Implants Res, 2003; 14:263-8.
doi: 10.1034/j.1600-0501.2003.140302.x pmid: 12755775
[25] Bunyaratavej P, Wang HL . Collagen membranes: A review. J Periodontol, 2001; 72:215-29.
[26] Herten M, Jung RE, Ferrari D, Rothamel D, Golubovic V, Molenberg A , et al. Biodegradation of different synthetic hydrogels made of polyethylene glycol hydrogel/RGD-peptide modifications: An immunohistochemical study in rats. Clin Oral Implants Res, 2009; 20:116-25.
doi: 10.1111/j.1600-0501.2008.01622.x pmid: 19077154
[27] Hutmacher D, Hurzeler MB, Schliephake H . A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications. Int J Oral Maxillofac Implants, 1996; 11:667-78.
pmid: 8908867
[28] Jung RE, Lecloux G, Rompen E, Ramel CF, Buser D, Hammerle CH . A feasibility study evaluating an in situ formed synthetic biodegradable membrane for guided bone regeneration in dogs. Clin Oral Implants Res, 2009; 20:151-61.
doi: 10.1111/j.1600-0501.2008.01633.x pmid: 19191792
[29] Jung RE, Zwahlen R, Weber FE , Molenberg A, van Lenthe GH, Hammerle CH. Evaluation of an in situ formed synthetic hydrogel as a biodegradable membrane for guided bone regeneration. Clin Oral Implants Res, 2006; 17:426-33.
doi: 10.1111/j.1600-0501.2005.01228.x pmid: 16907774
[30] Simon BI, Von Hagen S, Deasy MJ, Faldu M, Resnansky D . Changes in alveolar bone height and width following ridge augmentation using bone graft and membranes. J Periodontol, 2000; 71:1774-91.
doi: 10.1902/jop.2000.71.11.1774 pmid: 11128929
[31] Miller NA, Penaud J, Kohler C, Ambrosini P . Regeneration of bone graft donor sites. Clin Oral Implants Res, 1999; 10:326-30.
doi: 10.1034/j.1600-0501.1999.100409.x pmid: 10551075
[32] Geurs NC, Korostoff JM, Vassilopoulos PJ, Kang TH, Jeffcoat M, Kellar R , et al. Clinical and histologic assessment of lateral alveolar ridge augmentation using a synthetic long-term bioabsorbable membrane and an allograft. J Periodontol, 2008; 79:1133-40.
doi: 10.1902/jop.2008.070595 pmid: 18597594
[33] Stavropoulos F, Dahlin C, Ruskin JD, Johansson C . A comparative study of barrier membranes as graft protectors in the treatment of localized bone defects. An experimental study in a canine model. Clin Oral Implants Res, 2004; 15:435-42.
doi: 10.1111/j.1600-0501.2004.01029.x pmid: 15248878
[34] Meikle MC, Papaioannou S, Ratledge TJ, Speight PM, Watt-Smith SR, Hill PA , et al. Effect of poly DL-lactide--co-glycolide implants and xenogeneic bone matrix-derived growth factors on calvarial bone repair in the rabbit. Biomaterials, 1994; 15:513-21.
doi: 10.1016/0142-9612(94)90017-5 pmid: 7918904
[35] Schliephake H, Kracht D . Vertical ridge augmentation using polylactic membranes in conjunction with immediate implants in periodontally compromised extraction sites: An experimental study in dogs. Int J Oral Maxillofac Implants, 1997; 12:325-34.
doi: 10.1111/j.1365-2591.1997.tb00699.x pmid: 9197097
[36] Lutolf MP, Weber FE, Schmoekel HG, Schense JC, Kohler T, Müller R , et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol, 2003; 21:513-8.
doi: 10.1038/nbt818 pmid: 12704396
[37] Jung RE, Halg GA, Thoma DS, Hammerle CH . A randomized, controlled clinical trial to evaluate a new membrane for guided bone regeneration around dental implants. Clin Oral Implants Res, 2009; 20:162-8.
doi: 10.1111/j.1600-0501.2008.01634.x pmid: 19191793
[38] Thoma DS, Dard MM, Halg GA, Ramel CF, Hammerle CH, Jung RE . Evaluation of a biodegradable synthetic hydrogel used as a guided bone regeneration membrane: An experimental study in dogs. Clin Oral Implants Res, 2012; 23:160-8.
doi: 10.1111/j.1600-0501.2011.02217.x pmid: 21692857
[39] Elbert DL, Pratt AB, Lutolf MP, Halstenberg S, Hubbell JA . Protein delivery from materials formed by self-selective conjugate addition reactions. J Control Release, 2001; 76:11-25.
doi: 10.1016/S0168-3659(01)00398-4 pmid: 11532309
[40] Ramel CF, Wismeijer DA, Hammerle CH, Jung RE . A randomized, controlled clinical evaluation of a synthetic gel membrane for guided bone regeneration around dental implants: Clinical and radiologic 1- and 3-year results. Int J Oral Maxillofac Implants, 2012; 27:435-41.
doi: 10.1016/j.ijom.2011.12.001 pmid: 22442785
[41] Jung RE, Benic GI, Scherrer D, Hammerle CH . Cone beam computed tomography evaluation of regenerated buccal bone 5 years after simultaneous implant placement and guided bone regeneration procedures--a randomized, controlled clinical trial. Clin Oral Implants Res, 2015; 26:28-34.
doi: 10.1111/clr.12296 pmid: 24299007
[42] Ohayon L, Taschieri S, Corbella S, Del Fabbro M . Maxillary sinus floor augmentation using biphasic calcium phosphate and a hydrogel polyethylene glycol covering membrane: An histological and histomorphometric evaluation. Implant Dent, 2016; 25:599-605.
doi: 10.1097/ID.0000000000000435 pmid: 27548109
[43] Vierra M, Mau LP, Huynh-Ba G, Schoolfield J, Cochran DL . A lateral ridge augmentation study to evaluate a synthetic membrane for guided bone regeneration: An experiment in the canine mandible. Clin Oral Implants Res, 2016; 27:73-82.
doi: 10.1111/clr.12517 pmid: 25385674
[44] Zambon R, Mardas N, Horvath A, Petrie A, Dard M, Donos N . The effect of loading in regenerated bone in dehiscence defects following a combined approach of bone grafting and GBR. Clin Oral Implants Res, 2012; 23:591-601.
doi: 10.1111/j.1600-0501.2011.02279.x pmid: 22092957
[45] Schulz KF, Altman DG, Moher D, Group C . CONSORT 2010 statement: Updated guidelines for reporting parallel group randomized trials. Ann Intern Med, 2010; 152:726-32.
doi: 10.7326/0003-4819-154-4-201102150-00016 pmid: 20332509
[46] Jensen AT, Jensen SS, Worsaae N . Complications related to bone augmentation procedures of localized defects in the alveolar ridge. A retrospective clinical study. Oral Maxillofac Surg, 2016; 20:115-22.
doi: 10.1007/s10006-016-0551-8 pmid: 26932593
[47] Becker W, Dahlin C, Becker BE , Lekholm U, van Steenberghe D, Higuchi K, et al. The use of e-PTFE barrier membranes for bone promotion around titanium implants placed into extraction sockets: A prospective multicenter study. Int J Oral Maxillofac Implants, 1994; 9:31-40.
pmid: 8150510
[48] Gher ME, Quintero G, Assad D, Monaco E, Richardson AC . Bone grafting and guided bone regeneration for immediate dental implants in humans. J Periodontol, 1994; 65:881-91.
doi: 10.1902/jop.1994.65.9.881 pmid: 7990026
[49] Hammerle CH, Bragger U, Schmid B, Lang NP . Successful bone formation at immediate transmucosal implants: A clinical report. Int J Oral Maxillofac Implants, 1998; 13:522-30.
doi: 10.1016/S0020-1383(98)00094-1 pmid: 9714959
[50] Machtei EE . The effect of membrane exposure on the outcome of regenerative procedures in humans: A meta-analysis. J Periodontol, 2001; 72:512-6.
doi: 10.1902/jop.2001.72.4.512 pmid: 11338304
[51] Thoma DS, Halg GA, Dard MM, Seibl R, Hammerle CH, Jung RE . Evaluation of a new biodegradable membrane to prevent gingival ingrowth into mandibular bone defects in minipigs. Clin Oral Implants Res, 2009; 20:7-16.
doi: 10.1111/j.1600-0501.2008.01604.x pmid: 19126102
[1] Shichun Shen, Chen Gong, Cheng Cheng, Yuting Sun, Jianlong Sheng. Three types of antithrombotic therapy in atrial fibrillation patients undergoing percutaneous coronary intervention: a meta-analysis and systematic review[J]. Journal of Molecular and Clinical Medicine, 2020, 3(1): 9-18.
[2] Itay Levi, Michal Halperin-Sternfeld, Hadar Zigdon-Giladi, Eli E. Machtei, Jacob Horwitz. Dimensional changes of the alveolar ridge in the posterior maxilla and sinus pneumatization following teeth extraction[J]. Journal of Molecular and Clinical Medicine, 2018, 1(2): 93-98.
No Suggested Reading articles found!